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A B S T R A C T

Flavonoids are widely existing compounds with enormous pharmacological effects from food and medicine. However, the low
bioavailability in intestinal absorption and metabolism limits their clinical application. Intestinal efflux ABC (ATP binding
cassette) transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-
associated proteins (MRPs), act as ”pumping doors” to regulate the efflux of flavonoids from intestinal epithelial cells into the
intestinal cavity or the systemic circulation. The present review describes the critical effect of ABC transporters involved in the
efflux of flavonoids which depend on its efflux direction. And the role of flavonoids for modulation of intestinal ABC transporters
was emphasized and several examples were given. We summarized that the resistance effect of flavonoid-mediated multidrug on
ABC transporters may influence the bioavailability of drugs, bioactive ingredients and/or toxic compounds upon dietary uptake.
Meanwhile, flavonoids functionalized as reversing agents of the ABC transportermay be an importantmechanism for unexpected
food-drug, food-toxin or food-food interactions.The overview also indicates that elucidation of the action and mechanism of the
intestinal metabolic enzymes-efflux transporters coupling will lay a foundation for improving the bioavailability of flavonoids in
vivo and increasing their clinical efficacy.

© 2021 The Authors. Publishing services by Visagaa Publishing House
This is an open access article distributed under theCCBY-NC4.0 license (https://creativecommons.org/licenses/by/4.0/).

1. INTRODUCTION

Flavonoids distinguished by the main chemical structure of C6-
C3-C6, are a class of polyphenols widely existed in food and other
natural products.They have a variety of biological activities, such as
antioxidant, anti-inflammatory, anti-virus, and anticancer effects.
The instability of flavonoids in the intestinal is one of the reason
for their low bioavailability, limiting their clinical application [1]
. In recent years, the intestinal absorption and biotransformation
characteristics of flavonoids have drawn extensive attentions.
In general, flavonoids are metabolized by three phase II drug-
metabolizing enzymes, including glucuronide transfer UDP
glucuronosyltransferases (UGTs) [2], sulfatases (SULTs) [3], and
glutathione S-transferases (GSTs) [4]. Subsequently, these phase
II metabolites are transported by ATP binding cassettes Porter
(ABC) located in the apical membrane of intestinal epithelial
cells to the intestinal cavity or into systemic circulation, including
P-glycoprotein (P-gp), mammary gland Cancer resistance
protein (BCRP), and multidrug resistance associated protein
(MDR-associated proteins, MRPs), etc. significantly affect the
pharmacokinetics, drug interactions and clinical efficacy and
side effects of flavonoids [5]. Studies have shown that phase II

metabolites are the main form of flavonoids that existed in vivo,
while phase I drug metabolizing enzymes, alike cytochrome
P450 (CYP) and etc., play a weak role in the internal disposal
for flavonoids [6]. But it can be significantly affected by the
efficient coupling of drug metabolizing enzymes with efflux
transporters [7] . Recently published studies focusing on the
coupling effect of phase I drug metabolizing enzyme of (CYP3A4)-
P-gp, showed that the P-gp had a regulatory effect on CYP3A4
metabolism, and synergistically affected the pharmacokinetics and
pharmacodynamics of drugs [8–10]. And our research group has
recently found that there was an important coupling between phase
II drug metabolizing enzymes (UGTs, sults) and efflux transporters
(BCRP, MRPs), which significantly affected the in-vivo disposal of
flavonoids [1, 11]. In this review, we summarized relative findings
regarding the ABC transporters involved in the efflux of flavonoids
from the intestinal cells to the basolateral blood side and thereby
facilitating absorption, or back into the intestinal lumen, leading to
reduced bioavailability.
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Figure 1 | Distribution of MRPs in major human tissues and organs
(Adapted fromWang et al., 2021).

2. CORRELATION BETWEEN ABC
TRANSPORTERS AND MDR

The intestinal ABC transporters including P-gp (P-glycoprotein),
MRPs (multidrug resistance proteins) and BCRP (breast cancer
resistance protein) are involved in the efflux of chemicals [12].
These transporters are generally located specifically in the
apical (intestinal luminal side) or basolateral (blood/plasma
side) membrane of the enterocytes (Figure 1). Drugs could
be simultaneously substrated and/or inhibited with more than
one efflux transporter, indicating that these transporters exert
a combined detoxification role in the intestine [13]. Among all
of the ABC transporters, P-gp and MRPs have been extensively
studied in controlling the efflux and uptake of many chemicals
such as phenolics, nutrients, amino acids, inorganic ions, and
etc. [14, 15]. Examples for the involvement of P-gp and MRPs in
the bioavailability of phytochemicals and bioactive compounds
can be found in literatures [16–18]. Several researchers conducted
in-vitro studies and supported the role of ABC transporters
in the absorption of drug at the gastrointestinal tract through
monolayers of cultured Caco-2, HCT8, and MDCK epithelial
cells [19–21]. Other in vivo works also demonstrated the P-gp

played an important part in reducing the oral bioavailability of
several drugs, such as digoxin [22], talinolol [23], cyclosporine [24]
and vinblastine [25]. And the result for the intestinal uptake
of cyclosporine was also confirmed by healthy human [26].
More efficient transportation of saquinavir was found in MRP2-
transfected MDCK II cells (Madin-Darby canine kidney), when
compared to otherMDCKII cells over-expressed ABC transporters,
indicating a vital role of MRP2 in the efflux of saquinavir [27].
On the other hand, pharmacokinetic studies by Merino and
co-workers [28] reported that the concentration of fluoroquinolone
antibiotic ciprofloxacin in the plasma of deficient BRCP1 (-/-)
mice was increased more than twofold (1.77 µg/ml), after the oral
administration of ciprofloxacin in 10mg/kg dose, as compared with
wild-typemice (0.73µg/ml, p < 0.01). This result suggested that the
BCRP1 constrained the oral bioavailability of ciprofloxacin [28].
Meanwhile, the oral bioavailability of topotecan could also be
affected by BRCP1 and P-gp transporters in mice [29]. In a study of
co-administrated humans with GF120918, which was an inhibitor
of BCRP and P-gp, the bioavailability of topotecan was increased
as well [30]. In addition to the role of ABC transporters in the oral
bioavailability of drugs, recent studies have focused on their roles
in determining the bioavailability of toxins, bioactive compounds,
and food ingredients [31, 32]. For example, 2-amino-1-methyl-
6-phenylimidazo pyridine (PhIP) known as the major toxic
heterocyclic amine in cooked meat, has been demonstrated to be
transported back into the lumen by apical ABC transporters, when
the ABC transporters acted as the first line of defense against this
harmful compound [31]. The interaction between ABC transport
proteins and PhIP was also investigated by using multiple model
systems, including Caco-2 monolayers with specific inhibitors of
Pgp- or MRP-associated transport proteins [33], MRP2 deficient
rats [34], MRP2 knockout mice [35], and Bcrp1(-/-) mice [34].
Data obtained by Walle and co-workers from an in vitro Caco-2
cell monolayers system showed that MRP2 played a role in the
transport of genistein-7-glucoside, and therefore resulted in a
low bioavailability (Walle et al., 2003). The same system was
employed for the transport studies of Ginkgo flavonols, and it was
demonstrated that quercetin, kaempferol, and isorhamnetin were
substrates for P-gp and that Pgp-mediated efflux [36]. Using the
specific BCRP1 inhibitor of fumitremorgin C, in situ intestinal
perfusion MRPs deficient rats and MDCKII cells, it was confirmed
that especially Bcrp1 limited the absorption of quercetin from
intestinal of the flavonoid [37]. In fact, the culture cells model,
everted intestine, and the whole animal system are extensively
used experimental methods for the evaluation of intestinal efflux
transporters located on an apical membrane (Figure 2).

3. FLAVONOIDS REGULATE ABC
TRANSPORTERS TO OVERCOME MDR

Phytoestrogen genistein has been demonstrated to modulate P-gp
expression in hepatocellular carcinoma in vitro, moreover, it was
found effective in the clearance of relevant P-gp substrates
at concentrations as tested by (author?) [38]. In mouse
macrophages J774.1, nobiletin activated AMPK and promoted
the expression of ABCA1 and ABCG1 [39]. Tangeretin, a citrus
pentamethoxyflavone, antagonized ABCB1-mediated multidrug
resistance by inhibiting its transport function [40]. The effects of
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Figure 2 | Schematic representation of some experimental methods for
the functional analysis of intestinal efflux transporters located on apical
membrane: culture cells (A,B), everted intestine (C, D), and whole
animal (E), adapted from Takano et al [13] .

CG, EC, EGC, ECG, and EGCG on the P-gp function in multidrug-
resistant P-gp over-expressed KB-C2 cells were observed by
many researchers as shown in Table 2. Apigenin and naringenin
with C2=C3 conjugation were proved to down-regulate ABC
transporter expression, and inhibit P-gp activity and ATPase [41].
Ali and co-authors found that pre-treatment with naringin at 5
mg/kg body weight for 3 consecutive days, was able to inhibit
the doxorubicin-stimulated ATPase activity and modulate the in
vivo expression of P-gp [42]. The modulatory effect of acacetin-
doxorubicin complex on the influx and efflux of doxorubicin
was mediated through down-regulation of MDR1 transporter
in NSCLC cells [43]. On the other hand, chrysin could inhibit
ABCB1 mediated rhodamine 123 (an ABCB1 substrate) efflux in
human breast cancer MDA-MB-231 cells [44]. Chrysin might also
regulate ABCG2 mediated nitrofurantoin transport on ABCG2-
overexpressed human MCF-7 breast cancer cells by increasing the
area under the curve (AUC) [45]. Moreover, chrysin sensitized the
ABCG2-transfected cells to mitoxantrone (an ABCG2 substrate)
via stimulating ATPase [46]. Naringenin seemed to use an active
ATP system mediated by MRP1, which was expressed at the
basolateral side of the intestinal cell [47]. Daidzein (5 µM) could
up-regulate MRP2- and down-regulate MRP1 protein expressions
in MCF-7 and MDA-MB-231 cells, respectively. Major findings
from both in vitro and in vivo studies revealed that the quercetin
was an MDRmodulator [48]. Biochanin A and phloretin have been

Figure 3 | Chemicalstructure of some P-glycoprotein inhibitors
belonging to flavonoids (PubChem Compound Database)

reported to have the ability to stimulate P-gp ATPase activity [49],
however, morin and silymarin showed an inhibitory effect on P-gp,
confirming that all of them could inhibit P-gp-mediated cellular
efflux [50]. This review summarized the variety of flavonoids with
an overlapped specificity for P-gp, MRPs, and BCRP as shown
in Figure 4. Biochanin A, kaempferol hesperetin, and quercetin
have been reported many times for their similar activities on ABC
transporters, which indicated that the structural characteristics for
the inhibition of the three major human ABC transporters( P-gp,
BCRP and MRP2) may be partly similar. However, knowledge
gained so far for the affinity overlap between ABC transporters
has been only derived from scattered observations for individual
compounds or small series [51, 52]. Therefore, more systematic
studies on affinity patterns and molecular features of flavonoids
that determine the inhibition specificity of ABC transporters are of
great interest in future researches.
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Table 1 |Overview the effect of dietary flavonoids on transport or bioavailability of drugs and other xenobiotics in different model systems
Flavonoids Model system Accumulation of target

compound
References

Genistein Caco-2, IEC-6, MDR1-MDCK,
HCC-derived HepG2 cells

Repaglinide, Daunorubicin [53, 54]

Morin, phloretin, biochanin
A, chalcone, and silymarin

MCF-7/ADR cells Daunomycin [55]

Nobiletin ABCB1 over-expressing A2780/T
and A549/T, KB-C2 , Caco-2

Paclitaxel, doxorubicin, docetaxel,
dounorubicin, daunorubicin,
vinblastine

[56, 57]

Baicalein,
(-)-epigallocatechin gallate,
kaempferol, quercetin and
silymarin

MDCK II Rhodamine 123 [58]

Catechin-gallate,
epigallocatechin-gallate,
epicatechin-gallate

MDCK-MDR1 cells Antiepileptic drugs:
carbamazepine, phenytoin,
oxcarbazepine

[58]

Curcumin MCF&#8209;7/DOX,
MDA&#8209;MB&#8209;231/DOX

Doxorubicin [59]

Quercetin, Rats Rhodamine 123 [60]
Acacetin, apigenin, chrysin,
diosmetin, genistein,
kaempferide, kaempferol,
luteolin,
luteolin-4’-O-glucoside,
naringenin,
naringenin-7-glucoside

K562, K562/BCRP Mitoxantrone, SN-38, topotecan [61]

Tangeretin Adriamycin resistant
human myelogenous leukemia

Vincristine, verapamil, cyclosporin
A

[62]

Daidzein LS-180V Cells rhodamine-123 [63]
Biochanin-
A, genistein, quercetin, chalcone, silymarin, phloretin,morin,
and kaempferol

Panc-1 cells. Daunomycin, vinblastine [64]

Biochanin A, quercetin,
silymarin

MCF-7, MCF-7 ADR Daunomycin [49]

Apigenin, biochanin A,
chrysin, diosemin, fisetin,
genistein, hesperitin,
kaempferol, luteolin, morin,
narigenin, phloretin, and
quercetin

MDA-MB231 γ-hydroxybutyrate [65]

Flavonoid derivatives
possessing N-
benzylpiperazine
chain

K562/DOX cells Doxorubicin [66]

Myricetin Caco-2 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine

[67]
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Figure 4 | A varieties of flavonoids with an overlapped specificity for P-
gp, MRPs, and BCRP.

4. FLAVONOIDS EFFECT ON
ACCUMULATION AND BIOAVAILABILITY OF
BIOACTIVE COMPOUNDS

By given the involvement of transport proteins in the efficiency
of intestinal transport, it can be envisaged that the ABC transport
inhibitors may not only affect the MDR of tumor cells, but may
also affect the bioavailability of diverse drugs, bioactive food
ingredients and/or toxic compounds upon oral uptake (Table 1).
For instance, Jin et al. found that exposure to genistein elicited an
elevation in intracellular accumulations of Rhodamine 123 and
daunorubicin (DNR) in P-gp-expressing cell lines [43]. Intestinal
absorption of repaglinide was found predominantly enhanced by
genistein or P-gp inhibitor of verapamil (Ver), according to in
situ rat jejunal perfusion studies and in vitro transport assays
using everted rat intestinal sac preparations [53]. Meanwhile, as
P-gp inhibitors, morin, phloretin, biochanin A, chalcone, and
silymarin, significantly increased daunomycin accumulation in
vitro by more than 2.5-fold [55]. Moreover, it has been reported
that nobiletin, a citrus methoxyflavone, could increase the
accumulation of daunorubicin in KB-C2 cells and the uptake
of vinblastine in Caco-2 cells. In addition, nobiletin significantly
sensitized ABC overexpressed cells (A2780/T and A549/T) to
paclitaxel, doxorubicin, docetaxel, and dounorubicin [56]. Ferreira
and co-authors showed that baicalein, (-)-epigallocatechin gallate,
kaempferol, quercetin and silymarin, at 200 µM, produced a
significant enhancement in the intracellular accumulation of
rhodamine 123 in MDCK-MDR1 cells potentially through the
inhibition of P-gp activity [58] . They also evaluated a selected
flavonoid combination of (-)-epigallocatechin gallate/silymarin
in transepithelial transport experiments using licarbazepine (the
active metabolite of oxcarbazepine) as a model compound, and
the results revealed that the combination of (-)-epigallocatechin
gallate/silymarin was the most promising one (Ferreira et
al., 2018b). Furthermore, curcumin reversed doxorubicin
resistance in human breast cancer MCF&#8209;7/DOX and

MDA&#8209;MB&#8209;231/DOX cells by inhibiting the ATPase
activity of ABCB4 [59]. Quercetin was another reported inhibitor
for P-glycoprotein-mediated efflux transport, exhibiting an
enhancement on the intracellular accumulation of rhodamine-
123 in MCF-7/ADR cells with P-gp overexpressing [60].
Heptamethoxyflavone, nobiletin, and tangeretin, also promoted
the uptake of vincristine in a concentration-dependent manner
in adriamycin-resistant human myelogenous leukemia cells [62].
On the other hand, at the same concentration level of 100 µM,
biochanin-A, genistein, quercetin, chalcone, silymarin, phloretin,
morin, and kaempferol displayed the ability to increase the
accumulation of daunomycin and vinblastine in Panc-1 cells [64].
Moreover, biochanin A, silymarin, and naringenin are able to
reversetheMDR via inhibiting the P-gp function and increasing the
accumulation of daunomycin in MCF-7/ADR cells [49]. Apigenin,
biochanin A, chrysin, diosemin, fisetin, genistein, hesperitin,
kaempferol, luteolin, morin, narigenin, phloretin, and quercetin
significantly altered the pharmacokinetics and pharmacodynamics
of γ-hydroxybutyrate [45]. Fan et al. (2019) investigated the
inhibitory effects of 99 flavonoids on BCRP in vitro and in vivo,
who clarified certain structure-activity relationships that might
exist between flavonoids and BCRP. Eleven types of flavonoids,
including amentoflavone, apigenin, biochanin A, chrysin, diosimin,
genkwanin, hypericin, kaempferol, kaempferide, licochalcone A
and naringenin, exhibited significant inhibition against BCRP in
BCRP-MDCKII cells, through which the BCRP-mediated effluxes
of doxorubicin and temozolomide were reduced (Fan et al., 2019).
Moreover, another earlier study demonstrated that 28 flavonoid
derivatives, at a concentration of 5 µM, increased the cytotoxic
activity of doxorubicin in resistant K562/DOX cells [68]. Moreover,
2, 3, 4-trimethoxybenzylpiperazine chain attached to either flavones
or flavanone moiety was found to be more potent in reversing the
MDR as compared to the standard verapamil [67].

Figure 5 |Multi-functional flavonoids in overcoming MDR.
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4.1. Molecular mechanism of flavonoids
regulating ABC transporters

As in molecular level, the expression of P-gp is usually mediated
by multiple pathways, involving CYP3A4, NF-κB, cylooxygenases-
2 (COX-2), the mitogen-activated protein kinase (MAPK) pathway,
and phosphoinositide 3-kinase (PI3K) (Figure 5). Among them,
MAPK/ERK and NF-κB pathways are more reliable based on
their molecular mechanisms for MDR inducement. The NF-
κB pathway actively responds to MDR1 induction through the
activation of IκB kinase, the degradation of IκB, and the generation
of reactive oxygen species [69]. Moreover, NF-κB is bound at
the nucleotide position of the MDR1 promoter mediating the
transcription of MDR1 [70]. Similarly, the MAPK pathway, which
involves in p38MAPK subfamilies, c-Jun NH2-terminal kinase
(JNK)/stress-activate protein kinase (SAPK), and extracellular
signal-regulated kinase (ERK), also has crucial parts in signals
transmission, as provided by various kinds of stimulus to regulate
the MDR1 expression. Currently, various studies revealed the
over-expression of P-gp seemed to be closely related to the
nuclear localization of Y-box binding protein 1(YB-1) in various
solid tumors such as osteosarcoma, ovarian cancer, prostate
cancer, and breast cancer [71]. In addition, Coles et al verified
MAPK/ERK pathway regulated the phosphorylation of YB-1 via
ERK phosphorylation [69]. However, the interaction between
natural flavonoid agents and MAPK/ERK mediated YB-1 activity
has not been well investigated yet.

4.2. NF-�B/I�B signaling pathway

Under normal physiological conditions, NF-кB and its antagonistic
subunit IкB in cytoplasmwill combine to form an inactive complex.
WhenDNA is damaged by hypoxia or chemotherapeutic drugs, IкB
is phosphorylated, and NF-кB will be released from the complex
and enter the nucleus [72]. NF-кB could bind with the first exon
of MDR1 promoter region and further start the transcription of
MDR1, resulting in MDR [73]. For example, (author?) [69] used
A2780 and paclitaxel resistant strain A2780/T to investigate the
inhibitory effect of procyanidins on P-gp, and the result indicated
that procyanidins could significantly enhance the cytotoxicity
of paclitaxel in A2780/T resistant strain, and the procyanidins
could also inhibit the expression of P-gp mRNA in time and
concentration dependent manners [69]. In a study of signaling
pathway, proanthocyanidins significantly inhibited the nuclear
transfer of NF-кB/p65 induced by LPS and receptor activator
for NF-кB ligand (RANKL), and attenuated the up regulation of
NF-кB/IкB signaling pathway [69, 74]. In addition, puerarin also
showed a reverse effect on drug resistance. After being treated with
puerarin, the content of doxorubicin in K562/ADR resistant strain
increased, and the IC50 value of resistant strain decreased from 41.5
to 3.24µM, and the expression ofMDR1 protein, the activity of NF-
кB in K562/ADR cells was significantly inhibited [55]. (author?)
[75] proved that baicalein and luteolin have the chemoprevention
effect and inhibit drug resistance of LoVo/Dx cells, which may be
related to the overexpression of P-gp [75]. In addition, (author?)
[70] have observed the ability of baicalein to suppress the activation
of NF-κB in the HCT116 cell line. A significant increase in
inflammation incidence of the tumor was also found in colon

tumors stimulated mice [70]. Furthermore, the survival of colon
cancer cells and the stability of their genome were also influenced
by baicalein through the reduction of securine level and the increase
of γ-H2AX [76]. Taking these evidence together, (author?) [77]
concluded that the underlying mechanisms of flavonoids with
inhibitory effect onMDR in cancer cellsmay be due to the inhibition
of p65 hydrolysis and IкB phosphorylation, thereby inhibiting the
transcription and expression of MDR1, the target gene of NF-кB,
and finally showing a protective effect on the drug resistance of
drug-resistant cell lines (Table 2).

4.3. MAPK signaling pathway

There are three classical pathways in multicellular mammalian:
extracellular signal regulated kinase (ERK), c-jun NH2 terminal
kinase (JNK), and p38 MAPK pathway [86]. In MAPK signaling
pathway, ERK pathway is mainly involved in cell proliferation and
differentiation, while JNK and p38 pathways are mainly involved
in cell stress response and apoptosis [87]. Meanwhile, JNK and
p38 have high phosphorylation levels in tumor resistant cells [88].
Zhao and co-workers found proanthocyanidins inhibited the
phosphorylation of JNK and p38 in A2780/T cells. Furthermore,
proanthocyanidins effectively inhibited P-gp expression by
blocking MDR1 gene transcription and increasing the intracellular
accumulation of P-gp substrate rhodamine-123 [69]. Consistent
with this result, quercetin reversed P-gp associated MDR by
inhibiting the expression and function of P-gp through down-
regulation of NF-κB activity and MAPK/ERK pathway as mediated
YB-1 nuclear translocation (Chen et al.), offering an insight into
the reversing mechanism of MDR by flavonoids. When cells
are stimulated by anticancer drugs, YB-1 can translocate from
cytoplasm to nucleus, specifically bind to the Y-box regulatory
element of MDR1 gene promoter, inducing the expression of
MDR1 gene [89]. In addition, the down-regulation in MDR1
mRNA and P-gp expression through MAPK/ERK pathway in
MCF-7/ADR and K562/ADR could be also induced by different
concentrations of dihydromyricetin (1, 5, 10 µM) [90]. (author?)
[91] investigated the correlation between flavonoid paeonol and
K562/doxorubicin drug-resistant cell line. They found the paeonol
was effective in enhancing the concentration of intracellular drug.
When doxorubicin was combined with paeonol, the reversal
multiple was more than 20 times, and the expression of P-gp drug-
resistant gene was significantly down regulated. The expression
of p38 kinase in MAPK signaling pathway was also significantly
decreased in drug-resistant cells treated with paeonol [68]. In
exploring the effect of signal pathway on apoptosis rate, the results
showed that p-ERK was significantly decreased after being treated
with flavone and doxorubicin combination [92]. When cancer
cells were exposed to chemotherapy drugs for a long time, P-gp
mRNA dependence got increased. In terms of MAPK pathway,
flavonoids may activate nuclear metastasis of YB-1 and reduce
P-gp expression by inhibiting ERK1/2 phosphorylation [71]. In
addition, p38 MAPK and Akt/MAPK in MAPK signaling pathway
were upstream regulatory enzymes of NF-κB pathway, which could
promote the phosphorylation of NF-κB and participate in the
regulation of P-gp expression [93]. Flavonoids were also able to
inhibit the expression of P-gp by inhibiting the phosphorylation of
p38 [36].
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Table 2 |Overview of literature on the effect of dietary flavonoids with MDR reversal effects and their application.
Flavonoids Model system Functions References
Genistein Rat, MCF-7, PC3 prostate cancer

cells
ABC transporters regulation, ROS induction,
NF-κB inhibition, modulates P-gp expression

[38, 78]

Nobiletin, Mouse macrophages J774.1 ABC transporters regulation, activates AMPK [39]
Tangeretin Caco-2 cells ABC transporters regulation, stimulates

the ATPase activity
[40]

Catechin-gallate,
epigallocatechin-gallate,
epicatechin-gallate

KB-C2 cells and Caco-2 cells Inhibits the efflux of P-gp substrates [79, 80]

Quercetin EPG85-257RDB cells Decreases of P-gp expression, inhibit drug
transport, down-regulates of ABCB1 gene
expression

[81]

Apigenin, naringenin Caco-2 cells Downregulates ABC transporter, inhibits P-gp
activity and ATPase

[41]

Kaempferol, KB-3-1 cells (lacking Pgp) Decreases of P-gp expression, inhibits P-gp
activity

[82, 83]

Naringin Sprague Dawley rats ABC transporters regulation, inhibits the
doxorubicin-stimulated ATPase activity,
induction of GSH and GST, NF-κB inhibition,
modulates P-gp expression

[42]

Acacetin NSCLC cells Downregulates MDR1 transporter [43]
Chrysin ABC-transfected cells,

MDA-MB-231 cells
Sensitizes mitoxantrone, inhibit ABCB1
mediated rhodamine 123, ABC transporters
regulation

[44–46]

Diosmetin, erythromycin Staphylococcus aureus Inhibit the growth of ABC-pump [84]
Naringenin Caco-2 cells ABC transporters regulation [47]
Daidzein, genistein MCF-7, MDA-MB-231 cells Inhibition of BCRP activity and sensitization to

BCRP substrates
[85]

Biochanin A, phloretin MCF-7, MDA435/LCC6 Stimulates P-gp ATPase activity, inhibits
P-gp-mediated cellular efflux

[49, 50]

Morin, silymarin MCF-7, MDA435/LCC6 Inhibits P-gp ATPase activity, inhibits
P-gp-mediated cellular efflux

[50]

4.4. COX-2 signaling pathway

COX-2 is the source of reactive oxygen species (ROS). Excessive
COX-2 can significantly increase the ROS level in cells, inducing
oxidative stress. The concentration of ROS in tumor cells is
significantly higher than that in normal cells [94]. When a
high concentration of ROS poses a threat to cells’ survival, the
expression and clearance capacity of P-gp will increase in a stress
manner to prevent our body from absorbing harmful substances
and from being damaged by peroxidation [95]. Xiao and Co-
authros (author?) [96] treated HL-60 and HL-60a resistant strains
with quercetin for 48 h, and found that quercetin could induce
apoptosis of both strains, and the apoptosis rate increased with the
increase of quercetin concentration. The apoptosis rates of HL-60
and HL-60a cells, as well as the expression of COX-2 protein, were
all correlated to P-gp mRNA and COX-2 mRNA [96], suggesting
that flavonoidsmight induce apoptosis by inhibiting the expressions
of COX-2 and P-gp and initiating caspase-3 cascade ( ; Breier et al.,
2012) [97]. A further study showed that 10 µM apigenin combined
with doxorubicin could reverse the IC50 value of ADM cells by 3.04
times and significantly increase the growth inhibition rate of bel-
7401/ADM cells [98]. After apigenin treatment, the expression level
of p-Akt was significantly down regulated (P < 0.01), suggesting that
reversing effect of apigenin on drug resistance may be associated
with inhibiting the expression of p-Akt [98]. Inhibition of Akt

can improve the drug resistance of cells. COX-2 and PI3K/Akt
pathway belong to the upstream and downstream relationship, and
glycogen synthase kinase 3β (GSK-3β) is the downstream protein
of Akt [99]. Therefore, flavonoids may inhibit the expression of
COX-2 and the phosphorylation of GSK-3β/β-Catenin to regulate
the expression of downstream P-gp transcription factors. Another
possible mechanism is the transcriptional activity that depends on
the expressions of COX-2 and P-gp [100, 101].

4.5. GST-π pathway

GST is a class of enzymes that catalyze the binding of glutathione
(GSH) with electrophilic substances in the body. Among their five
subtypes, GST-π is closely related to tumor and has GSH binding
site. Anticancer drugs can induce the increase of GST-π expression,
catalyze the combination of GSH with chemotherapeutic drugs
and be excreted out of cells, leading to the drug resistance [102].
Another study reported by Balyan and co-authors investigated
the effect of luteolin on GST-π of K562/A02 drug-resistant cell
line and found luteolin significantly reduced the GSH content in
K562/A02 cells, and the expression of GST-π protein was decreased
by 22%, 26% and 34% on day 1, 3 and 5, respectively [103]. It
was speculated that the mechanism for some flavonoids to reverse
drug resistance may be related to GST-π, mainly by inhibiting the
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combination of anticancer drugs with GSH [104]. However, studies
also supported that kaempferol [105] and hesperetin [106] could
change the expressions of GST-π and P-gp in drug-resistant strains,
and the mechanism of reversing MDR characteristics might be due
to the inhibition in the change of P-gp expression induced by GST-
π. Moreover, after quercetin treatment, the reversed multiple of
Bel/Fu resistant strain could reach 2.4 times, and the expression
of GST- π gene in cells could be significantly down regulated, and
meanwhile, the ratio of P-gp/β-Catenin was decreased [36]. Xu and
Co-authors (author?) [107] discussed the effect of Baicalin on the
MDR characteristics of lung cancer cells A549 and its mechanism.
The results indicated that the growth of lung cancer cells treated
with baicalin was significantly inhibited in time and concentration
dependent manners; the expression of MDR1 and GST-πmRNA in
tumor cells treated with baicalin was significantly decreased [107].
When apigenin was combined with doxorubicin, the combination
reduced the content of GST-π to 18% and the level of ROS increased
by more than 20% compared to doxorubicin treatment [108].
GST-π, as an enzyme related to detoxification, is involved in the
detoxification process of free radicals produced by oxidants and
cytotoxic substances [109]. In this line, flavonoids may also inhibit
the expression of GST-π by inhibiting the entry of nuclear factor
E2 related factor 2 (Nrf2) into the nucleus and binding with the
promoter of downstream target gene GST-π, thereby increasing the
level of ROS involved in the tyrosine kinase signaling pathway as a
second messenger and regulating the expression of P-gp [110].

5. DISPOSITION OF FLAVONOIDS IMPACTS
THEIR EFFECT ON ABC TRANSPORTER

The disposition of flavonoids in the gastrointestinal tract after
dietary digestion provided numerous promises for human health.

Correspondingly, the ability of flavonoids to shape the
gastrointestinal tract offers the prospective of diet based therapies
for a wide array of conditions associated with dysbiosis [111].
Actually, the flavonoids after ingestion will undergo a metabolic
pathways in the small intestine to produce glycosides [11].
An enormous amount of the administrated flavonoids will be
transported and converted into phenolic acids in the colon by
microflora. Further transportation and metabolism through the
hepatic portal vein often happened in the liver. As shown in
Figure 6, phase I and phase II metabolism of flavonoids resulted
in more polar compoundgeneration. The metabolites then reach
the targeted tissues or are excreted by the kidneys. Many factors
such as low solubility, high degradation rate, and low metabolism
limit the bioavailability of flavonoids. Phase II enzymes such as
uridine-5′-diphosphate glucuronosyltransferases (UGTs) and
catechol-O- methyl transferases (COMT) are involved in extensive
first pass metabolism of flavonoids by transforming them to more
hydrophilic forms for excretion (Fernandes et al., 2016) [112].
As followed, the effluxes of flavonoids getting out of intestinal
cells return to the lumen for excretion as modulated by ABC
transporters, which also limits their bioavailability [113]. In
another word, depending on their structure, flavonoids and their
metabolites might act as inducers or inhibitors of ABC transporters
and phase II metabolizing enzymes [114].

Figure 6 | Schematic representation of metabolism andfactors
limiting the bioavailability of flavonoids. Abbreviations: UGT,UDP-
glucuronosyltransferase; GST, glutathione S-transferase; COMT,
catecholO-methyltransferase.

6. CONCLUSIONS

Researchers have shown the therapeutic effect of flavonoids in a
variety of diseases, but its low bioavailability significantly limits its
clinical application, which is closely related to intestinal absorption
and metabolism. The absorption and metabolism mediated by
intestinal phase II drug metabolizing enzymes (UGTs and SLUTs)
and efflux transporters (P-gp, BCRP and MRPs) have attracted
extensive attention and became a hot topic on the pharmacokinetics
of flavonoids. Once being absorbed by intestinal epithelial cells,
flavonoids would be widely used by phase II enzymes; meanwhile,
drug metabolizing enzymes are coupled with efflux transporters
to prevent their absorption. Therefore, the coupling of intestinal
drug metabolizing enzymes with efflux transporters is considered
as the main reason for the low bioavailability of flavonoids (e.g.,
genistein, daidzein, Robinia pseudoacacia, quercetin, kaempferol,
chrysin and apigenin). it also forms hydrophilic metabolites
(glucuronide/sulfate) catalyzed by phase II drug metabolizing
enzymes UGTs and SLUTs, which cannot penetrate cell membrane
by passive diffusion. The binding metabolites of these flavonoids
are the substrates of BCRP and MRP2. The external transporters
can regulate the rate of the extracellular glucuronide/sulfate, and
then affect the formation of glucuronide/ sulfation, increasing the
retention time of flavonoid compounds and glucuronides in the
local intestine.
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Table 3 | nteractions between transporters and flavonoids. Adapt from Jiang and Hu, 2012
Transporters Substrates Flavonoids as modulators Inhibitor
P-gp Flavonoid aglycone Catechin,epicatechin, grapefruit

juice, Quercetin and kaempherol
EGCG, quercetin Kaempherol, chrysin, flavones,
hesperetin,naringenin, genistein

MRPs Flavonoid glucuronides
and sulfates

Chrysin Genistein, kaempferol, Flavopiridol, chrysin,
quercetin, biochanin A, catechin, EGCG,
quercetin-7-O-glucuronide

BCRP coumestrin Flavonoid glucuronides
and sulfates

Quercetin,chrysin and flavone chrysin, biochanin A, apigenin, genistein, fisetin,
kaempferol, hesperetin, naringenin, quercetin,
luteolin-4-glucoside, daidzein-7-glucuronide,
daidzein-4-sulfate, daidzin,ononin, genistein,
sissotrin, glycitin

On the contrary, the inhibition of intestinal efflux transporters
can increase drug absorption and reduce drug metabolism, thus
significantly increasing drug bioavailability. Efflux transporters act
as a ”revolving gate” to regulate the in vivo bioavailability of
flavonoids ((Table 3)). Therefore, the study of flavonoid in vivo
treatment should not only consider the influence of a single drug
metabolic enzyme or transporter, but also consider the coupling
effect of enzyme-external transport on drug metabolism. At the
same time, metabolic enzyme and efflux transporter coupling will
further affect the drug interaction, clinical efficacy, and toxicity of
flavonoids. At present, the main challenge to study the coupling
of phase II drug metabolism (glucuronization/sulfation)-external
transport coupling is the lack of specific transporter inhibitors. In
recent years, many research groups have successfully constructed
a variety of coupling models for metabolic enzyme transporter
by using small interfering RNA (siRNA) or short hairpin RNA
(shRNA) technology to silence metabolic enzyme and transporter
genes. In conclusion, metabolic enzyme transporter coupling plays
a crucial role in the treatment of flavonoids and drug interaction,
which will significantly change the clinical efficacy and toxicity of
the drug.
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